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Humans possess the ability to perform complex manipulations without the need to consciously
perceive detailed motion plans. When a large number of trials and tests are required for tech-
niques such as learning by imitation and programming by demonstration, the virtual reality
approach provides an effective method. Indeed, virtual environments can be built economi-
cally and quickly and can be automatically re-initialised. In the fields of robotics and virtual
reality, this has now become commonplace. Rather than imitating human actions, our focus is
to develop an intuitive and interactive method based on user demonstrations to create human-
like, autonomous behaviour for a virtual character or robot. Initially, a virtual character is
built via real-time virtual simulation in which the user demonstrates the task by controlling the
virtual agent. The necessary data (position, speed etc.) to accomplish the task are acquired in
a Cartesian space during the demonstration session. These data are then generalised off-line
by using a neural network with a back-propagation algorithm. The objective is to model a
function that represents the studied task, and by so doing, to adapt the agent to deal with new
cases. In this study, the virtual agent is a six-degrees-of-freedom arm manipulator, Kuka Kr6,
and the task is grasp a ball thrown into its workspace. Our approach is to find the minimum
number of necessary demonstrations while maintaining an adequate task efficiency. Moreover,
the relationship between the number of dimensions of the estimated function and, the number
of human trials is studied depending on the evolution of the learning system.

Nowadays, robots have replaced humans in performing a
wide range of tasks. They have been used to increase pro-
ductivity and efficiency through the automation of manufac-
turing processes. Increasingly important in recent years is
the possibility of integrating robots into our everyday lives.
Robots are part of our environment not only because they can
perform simple and repetitive tasks, but also because they
can perceive humans and a human environment. More and
more robots possess learning skills whereby they can evolve.
Consequently, learning by imitation, modelling human mo-
tion and behaviour have become common fields for many
research areas such as robotics (Kuniyoshi, Inaba, & Inoue,
1994), cognitive science (Brown & Burton, 1978), or user-
modelling (Webb, Pazzani, & Billsus, 2001).

A simple task can be performed more easily by a hu-
man than a robot, such as moving an arm, because humans
possess the ability to perform complex manipulations with-
out the need to consciously perceive detailed motion plans
(Asada & Izumi, 1989). Virtual Environments (VEs) can
be built economically and quickly and can be automatically
re-initialised. Therefore, when a large number of trials and
tests are required, for techniques such as learning by imi-
tation (Kawasaki, Furukawa, Ueki, & Mouri, 2008 ; Chen
& Naghdy, 2002), Virtual Environments (VEs) provide an

effective method. As far as human perception ability is
concerned, programming by demonstration (PbD) in VEs
for robots and virtual characters has become a relevant do-
main of study, in which interactive methods have been de-
veloped to imitate human actions (Aleotti & Caselli, 2010).
This technique is particularly useful for tedious, unintuitive
and time-consuming aspects of robot programming (Chong,
Ong, Nee, & Youcef-Youmi, June 2009).

Rather than simply imitating human demonstrations, our
interest lies in the ability to provide an agent with human-
like, autonomous behaviour, while maintaining an intuitive
and interactive learning method. For this purpose, a partic-
ularly interesting study task in the field of robotics is grasp-
ing or catching a dynamic object. Indeed this requires dy-
namic, and kinematic models, as well as real-time solutions
in order to, (i) detect the moving object (Riley & Atkeson,
2002), (ii) follow and predict its trajectory (Payeur, Le-Huy,
& Gosselin, 1995), (iii) define and reach the meeting point
(Miyazaki & Mori, 2004) and finally, (vi) grasp the objet
(Aleotti & Caselli, 2010). Moreover, playing catch is a sim-
ple, safe and fun way for a person to interact with a robot,
and it can be an interactive task that directly engages the user
(Riley & Atkeson, 2002).

This paper describes a semi-real time, and interactive
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method to create autonomous behaviour of a virtual agent via
the generalisation of human demonstrations. In the present
study, the task is to grasp a ball flying through the air, and the
robot is the six-degrees-of-freedom arm manipulator Kuka
Kr6. After building a VE in which the robot, and the task
are simulated in Cartesian space, our approach consists of:
(i) merging the user in the robot workspace with a 3D inter-
face, (ii) demonstrating in real time the task by controlling
the virtual agent and, (iii) generalising off-line data acquisi-
tion from the human demonstrations, by using a neural net-
work and a back-propagation algorithm in order to estimate
the function that represents the task and makes the agent au-
tonomous.

In Section 1, related works about the grasp of dynamic
objects in robotics, programming by demonstration, and
learning through Virtual Reality (VR) simulations are
presented. The virtual environment is detailed in Section 2
with a description of the Kuka Kr6 robot and the real-time
control system. Elements about the chosen interface, the
simulation constraints, and the different workspaces are
also included in this Section. Section 3 shows the learning
process, the determination of the necessary data that must
be acquired and, the construction and use of the artificial
neural network. The experiments and results are discussed
in Section 4. An initial approach, in which the data are
collected from a large number of trials to ensure the validity
and the effectiveness of the method, is described, followed
by an analysis of the relation between the number of trials
and the number of dimensions of the estimated function.
Finally, a second approach minimises the necessary number
of demonstrations while keeping the same performance level
for the task. Finally a discussion is provided in Section 5
followed by a conclusion and the perspectives of this work.

Contribution

A key contribution of this work is to proposed a semi-real
time intuitive and interactive method to create human-like
autonomous behaviour for a virtual agent or robot, based on
human demonstrations.

The principal originality of the presented method lies in
the dual use of the two following aspects: the first aspect
is the capacity of human natural perception and planning to
simplify part of the necessary and complex, dynamic and
kinematic models to predict and follow a trajectory and to
determine the catching point. The second one is the use of
the neural network. Most the previously-cited works built a
neural network or a similar system in order to classify situ-
ations or grasp recognition (Friedrich et al., 1999 ; Rose III,
Sloan, & Cohen, 2001 ; Wojtara & Nonami, 2004 ; Cooper,
Hertzmann, & Popovic, 2007). In this paper, the system gen-
eralises in Cartesian space the necessary data recorded from
human demonstrations in order to enable an agent to accom-
plish the task. The function modelled by the neural network
allows the robot to adapt to new cases and create agent au-
tonomy.

It can be noted that, owing to the VR approach, a con-

trol system is implemented in which the user demonstrates
the task in real time while respecting the virtual agent’s
workspace. Another relevant attribute of the present work
is the study of the consequences linked to the variation of the
dimension number of the estimated function to the neces-
sary number of trials. Finally, we consider the approach with
which to determine the minimum of number demonstrations
while maintaining the same performance level of the task.

1 Related Works

1.1 Grasping Dynamic Objects
The complex robotic task consists of grasping a dynamic

object. The robot usually receives the position and orienta-
tion of the object and computes the best configuration and
the minimum force needed to grasp the object. This requires
solving advanced kinematic and dynamic equations. In a real
environment, this research field has been widely investigated.
For example, Hove and Slotine built a trajectory-matching
algorithm that combined an observer with a varying-strength
filter, an error estimator, and an initial motion algorithm
(Hove & Slotine, 1991). All path-planning for the catch
occurred in real-time during the half-second that the tar-
geted object was airborne. Rizzi and Koditschek worked
on a three-degrees-of-freedom arm robot which could jug-
gle with a ball (Rizzi & Koditschek, 1992, 1993). They
also presented other interesting work such as an architecture
which provided field rate estimates of the positions and ve-
locities of two independent falling balls. Buehler and co-
workers used a class of control algorithms, the ’mirror al-
gorithms’, which gave rise to experimentally observe jug-
gling and catching behaviour in a planar, robotic mechanism
(Buehler, Koditschek, & Kindlmann, 1994). Payeur et al.
used a multilayer perceptron neural network to predict the
trajectory of a dynamic object (Payeur et al., 1995). The po-
sition, velocity and acceleration of the object were predicted
with past history inputs. The study was made to solve the
real time trajectory problem in a robotic context wherein a
manipulator had to grasp a moving object which followed an
unknown path. Riley and Atkeson worked on a robot which
caught balls (Riley & Atkeson, 2002). They generated ball-
hand impact predictions based on the flight of the ball. Ac-
cording to the Programmable Pattern Generators (PPGs), and
by using a stereo, colour vision system, the QuickMag, to
detect and track the flying ball, the humanoid robot could
move to the impact position. Two years later, Miyazaki and
Mori presented an interesting trajectory control method us-
ing a visual servo and based on a motion method call GAG
(Gaining Angle of Gaze) (Miyazaki & Mori, 2004). This
method focused on the angle tangent of gaze against the ball
and, by keeping the angle value gaining in a finite rate-of-
change, they assumed that the mobile robot was able to track
and catch the ball in a three dimensional space. Hirai and
Miyazaki described the hierarchical architecture for rhyth-
mic coordination among robots which suited juggling-type
tasks (Hirai & Miyazaki, 2005).

These previous works are relevant, and their correspond-
ing results show an interesting degree of performance and
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realism. However the analysis and implementation of these
methods added to robot programming, make these processes
time-consuming and unintuitive (Chong et al., June 2009).

1.2 Programming by Demonstration

Grasping dynamic objects requires real time solutions,
processes and models to represent human action. With a
robotic arm manipulator, it may become an interactive task
which is in relation with human behaviour and motion. Pro-
gramming by Demonstration (PbD) primarily addresses in-
tuitiveness in human-robot interaction. With this approach,
robots can learn, improve or duplicate actions based on hu-
man demonstrations which provide an intuitive and fast way
of programming. PbD-systems became a common way of tu-
toring and programming robots for trajectory oriented tasks,
such as path planning through obstacles (Delson & West,
1994), or for industrial tasks, such as arc welding or gluing
(Schraft & Meyer, 2006). Different PbD approaches have
been proposed and reviewed (Dillmann, Rogalla, Ehren-
mann, Zollner, & Bordegoni, 1999 ; Knoop, Pardowitz, &
Dillmann, 2008). In some cases, these systems require a
large number of demonstrations before the learning process
can start. However, according to Kawasaki et al., in the
robotic field, learning by imitation is more effective in a VE.
Indeed, the VE can be built economically and can be quickly
re-initialized (Kawasaki et al., 2008).

1.3 The Virtual Reality Approach

During a learning session, the following drawbacks can
appear when a robot is manipulated in a real environment
(Tsubone, Kurimoto, Sugiyama, & Wada, 2008): (1) the
large number of tests needed to acquire adequate actions may
exceed several thousand, hence the restoration of the envi-
ronment to the initial learning state can be tedious, (2) in
the learning process there are safety problems with the robot
itself, as well as the possibility of damage to operational ob-
jects, robotic arms and/or human bodies, if the robot’s move-
ments are not stable, (3) the operator undergoes continued
stress because a mistake will immediately be copied by the
robot and may result in some possible damage.

VEs can overcome previous problems and offer a num-
ber of advantages including (Chen & Naghdy, 2002): (i) the
training data can be extracted and recorded directly leading
to the simplification of the data collection process, (ii) the
environment can be modified easily if the manipulation pro-
cess and its requirements are changed, (iii) the risk of break-
down and system breakage is very low, (iv) dangerous envi-
ronments can be built and simulated and, (v) a user-friendly
environment for the human operator can be developed easily.

VEs have often been used in order to study and imitate hu-
man action and behaviour. For example, Kawasaki et al. de-
veloped a system of virtual teaching for multi-fingered robots
(Kawasaki, Nakayama, Mouri, & Ito, 2001). Experimental
results of a pick-and-place task were presented to demon-
strate the effectiveness of the proposed method in a VE. Chen
et al. studied the transfer of manipulation skills from a hu-
man to a robotic manipulator through a task demonstration in

a haptic-rendered VE (Yutuo, Xuli, Okada, Chen, & Naghdy,
2007). They taught a ’peg in hole’ insertion task to a robot,
and studied how human manipulation skills could be repli-
cated. Knoop et al. presented an approach for mapping
symbolic task knowledge that had been obtained from user
demonstrations by a PbD system to a specific robot (Service
robot Albert 2) (Knoop et al., 2008). Chong et al. reviewed
some VR systems used for object manipulation in environ-
ments that were known a priori (Chong et al., June 2009).
Aleotti et al. exploited the automatic reconstruction of a VE
(Aleotti & Caselli, 2010). Indeed, based on classic patterns
in Augmented Reality, their system first built a VE match-
ing the real environment in order to easily configure object
placement. The user had to demonstrate a number of grasps
performed on static trial objects. Their programs learned
and classified human grasps off-line, and the demonstrations
were then imitated and adapted to a specific robot device.

1.4 The Active Learning Approach
In the domain of motion capture, a recurring problem is

that of building compact controllers for virtual, human-like
agents from a vast amount of motion samples and data. Re-
cently, Cooper and co-workers reviewed this field and de-
veloped a method to obtain compact, motion controllers for
complex parameterised tasks (Cooper et al., 2007). They de-
veloped a real-time active learning system with the user as
a key-point of the process. Their method consisted of us-
ing existing data of human motions and a task to perform
(for example, catching a ball), and identifying cases when
the virtual agent performs poorly. The system then creates
new pseudo-examples of motions by concatenating and in-
terpolating existing ones. If there is a sample considered as
acceptable by the user, it is recorded, otherwise, the user per-
forms the task during a motion-capture session and the result
is recorded. Numerous end criteria of the process are defined,
one being when all ’poor-performing’ candidates appear to
be high-quality to the user. A catching task was built with a
task success rate of 57 %, notably obtained by 30 acquired
samples. In terms of task efficiency, this result seems to be
insufficient and can be in relation to the end criteria implicat-
ing the user judgment. However, the purpose of this research
was not based on task performance but in the way to quickly
and interactively build highly-compact motion controllers.

2 Application Design

2.1 Description
This application is written in C/C++ language with the

OpenGL library. The simulation contains virtual objects such
as a ball, a hand controlled by the user and a robotic arm ma-
nipulator Kuka Kr6 (Figure 1). The virtual ball is animated
according to Newton’s second law:

∑−→F = m−→a (−→F : force
vector, m: masse, −→a : acceleration vector).

2.2 Kuka Kr6 Specifications
The Kuka Kr6 robot is an arm manipulator with 6 axes

of rotation and joint-arm kinematics. Figure 2 shows its
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Figure 1. The virtual simulation.

Figure 2. Parameters used for the direct geometrical model of the
Kuka Kr6.

topology. The gripper has a Cartesian position according
to the six angles q1, q2, q3, q4, q5, q6 given by the direct
geometrical model defined by X=f(Q), with X=(x,y,z) and
Q=(q1,q2,q3,q4,q5,q6) (cf. the Denavit-Hartenberg parame-
ters, (Spong & Vidyasagar, 1989), Table 1).

To get the values of the six rotation angles according to
the gripper position, the inverse geometrical model based
on Paul’s method is used (Paul, 1979). With the hypothe-
sis that the robot can reach all points of its workspace at any
time, with no constraints on the rotation angles, the Kuka
Kr6 workspace is a torus defined by the following equation:

(
√

(x2 + z2) − M)2 + y2 ≤ R2

with:
−R =

√
((r2 + r3)2 + d2

3) + d2

−M = d1

Table 1
Denavit-Hartenberg Table.
j a d q r
1 0 0 q1 r1
2 90 d1 q2 0
3 0 d2 q3 0
4 90 d3 q4 r2
5 -90 0 q5 0
6 90 0 q6 r3

Four parameters are used to pass from a system of
coordinates R j−1 to a system of coordinates R j:
- a j rotation angle between axis y j−1 and y j around x j−1
axis,
- d j distance between axis y j−1 and y jmeasured along x j−1
axis,
- q j rotation angle between axis x j−1 and x j around y j
axis,
- r j distance between axis x j−1 and x j measured along y j
axis.

2.3 The Tracking Interface & the Workspace Cor-
relation

Using a virtual agent like a puppet in real time leads to a
workspace problem. Indeed, the implemented virtual simu-
lation must deal with the workspace of (i) the user, (ii) the
interface, and (iii) the virtual agent. The workspace and the
multi-modal aspect of the interfaces create a vast study field
in the VR domain. In the present study, a possibility is to
chose a haptic interface that constrains the user to use the
robot workspace, owing to the feedback system. Further-
more, according to Richard et al., the haptic feature of some
interfaces can enhance user immersion (Richard et al., 1996).
However, Richard and co-workers reviewed these interfaces
and argued that most of them are intrusive, expensive and
have a limited workspace (Richard, Chamaret, Inglese, Lu-
cidarme, & Ferrier, 2006). The limited workspace feature
can also be considered for desktop 3D interfaces such as the
PhantomOmniT M device from Sensable, although it offers a
high degree of accuracy. The use of interfaces with a large
workspace, such as a motion capture system or a human-
scale interface such as the SPIDAR (Space Interface Device
for Artificial Reality), can be considered (Chamaret, Ullah,
Richard, & Naud, 2010). The present study does not require
expensive, motion-capture equipment, and the virtual agent
can be different from a human model. Our interest is not in
the reproduction and creation of animations. The SPIDAR,
as all haptic interfaces, is confronted with the resistance and
weight of elements that generate the force feedback. In-
deed, for action with high levels of dynamism, the string
and motors can possibly limit the user performances. This
last point, added to the necessary multiple human demon-
strations of such a dynamic action, led us to adopt a tracking
system using the PatriotT M from Polhemus, that has a ad-
equate workspace for this task, in order to track the user’s
hand with relatively little clutter.
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2.4 The Grasping Interface & System

The grasp techniques in VEs with high-accuracy, hand-
like interfaces have been thoroughly investigated, in particu-
lar by Aleotti and Caselli (Aleotti & Caselli, 2010). Accord-
ing to them, VR gloves are not designed for physical manip-
ulation. They are in fact, dedicated devices and can easily
be broken through the repeated contact and manipulation in-
volved in physical grasping. Consequently, a grasp technique
quite similar to the work of Cooper and co-workers (Cooper
et al., 2007) was adopted. A simple classic glove is built with
the patriot sensor and an integrated, wireless mouse button
to close or open the virtual hand. The ball can be grasped
by the virtual robotic arm or by the virtual hand. A detection
sphere is used to represent the physical collision of the grip-
per (respectively the hand) and it remains invisible during
the experiment. The detection sphere has a predefined size
and is adjusted to the gripper (the hand) position. If the ball
centre is in the detection sphere, and if the gripper (the hand)
is closed, then the ball is caught. The object position is read-
justed according to the robot gripper position (respectively,
the hand position, Figure 3).

(a)

(b)
Figure 3. Grasping system: (a) the detection sphere and the fly-
ing object. (b) the ball centre is inside the detection sphere, so the
dynamic object position is readjusted to the gripper position.

2.5 Robot Control System

To control the virtual robot, the user operates the Kuka
Kr6 end effector with the virtual hand. The concept is to
merge the virtual hand and the robot gripper (Figure 4). At
any frame, the Cartesian position of the user hand is known,
and if it belongs to the robot’s workspace then the inverse
geometrical model is used to find the six angles q1, q2, q3,
q4, q5, q6 according to the hand position. Opengl blending
effects are added on the hand and the Kuka Kr6 model. When
the hand is opened, the gripper is opened and when the hand
is closed, the gripper is closed. Only the robot gripper can

grasp the ball. Figure 5 shows the Kuka Kr6 controlled by
the user.

Figure 4. Conceptual representation: the hand drives the gripper
to reach the thrown ball.

Figure 5. The user vision during the learning process. The robot
is driven by user to grasp the flying ball.

Nevertheless, the kinematics of the arm robot are specific
and, to adopt such a control scheme while respecting the ro-
tation speed of each axe, for example, can make the demon-
stration process difficult. Consequently, as suggested in Sec-
tion 2.2, no kinematic constraints on the Kuka Kr6 rotation
angles were applied during the learning process.

3 Learning Process

3.1 Demonstration Process

In Cartesian space, a realistic hypothesis is that the robot
can simultaneously determine the ball position (Pbx, Pby,
Pbz) and its speed (Vbx, Vby, Vbz) at one or more discreet
times ’t1’. The gripper’s position (Prx, Pry, Prz) therefore
has to meet the flying object at a moment ’t2’ greater than
’t1’, on the ball’s trajectory, within its reachable space. There
are several points on the trajectory where the object can be
caught. This constitutes a ’meeting problem’. To overcome
the problem of defining the meeting point and, predicting and
following the trajectory, the user freely drives the arm robot
in order to grasp the dynamic object each time the ball is
thrown.
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3.2 Data Acquisition: Output & Input Determina-
tion

The constraints of the learning protocol are the following:
(C1) the ball has a fixed start position, (C2) the trajectory is
parabolic, (C3) the ball has to reach the robot’s workspace.
The process is the following one: initially, to ensure the va-
lidity of the method, a great quantity of balls are thrown until
six hundred are grasped by the robot driven by the human
operator. The balls are thrown with a random initial velocity
vector. These vectors are the inputs of the neural network.
For every grasped object, the gripper position is recorded.
These vectors are the expected outputs. Knowing that six
hundred speed vectors are randomly generated, the fact that
there are not two identical vectors is checked. Furthermore,
an average of nine hundred throws is finally necessary until
the user grasps the six hundred wanted objects (a 2/3 ratio).
Figure 6 shows the demonstration process.

Figure 6. Diagram of the demonstration process (n: number of
required demonstrations).

3.3 Artificial Neural Network
To go further than a simple imitation of human demonstra-

tions, the autonomous behaviour of the robot is constructed
from the data acquired from the human demonstrations. In-
deed, it is assumed that there is a relationship between the
recorded inputs and the outputs. Consequently, the objective
is to find a mathematical model of this relationship knowing
that the data are in closed definition domains. A model of
the process based only on measured data is searched for. In
an artificial neural network domain, this concept is called:

’black box modelling’ (Dreyfus, Martinez, Samuelides, &
Gordon, 2002). On the hypothesis that the expected solutions
are probably not separated from the unwanted solutions by a
hyperplane, a no-loop neural network composed of one hid-
den layer is used, with a back-propagation gradient algorithm
(Figure 7).

Figure 7. Neural network used for this experiment: 3 inputs, 8
neurons in 1 hidden layer, 3 output neurons, activation function:
sigmoid exponential function and n = 0.2 (n: learning rate).

The following steps are executed: create a learning set,
create one or several test sets, observe the iteration num-
ber (NI) of the back-propagation gradient algorithm and the
quadratic error (E) on the learning set, and stop the algorithm
following the values of E and NI (Dreyfus et al., 2002). To
consider the global performance of the learning set (respec-
tively test sets), the average quadratic error EQMA (respec-
tively EQMT) is calculated:
E = 1

2
∑
e

(se − ye)2

EQMA =

√
1

Na
∑
ea

(sea − yea)2

EQMT =

√
1
Nt
∑
et

(set − yet)2

- e: element belonging to the learning/test set.
- ea: element belonging to the learning set.
- et: element belonging to the test set.
- s: wanted output
- y: obtained output
- Na: number of elements of the learning set.
- Nt: number of elements of the test set.
Of the six hundred vector couples, one hundred couples com-
pose the learning set. Then five test sets of one hundred cou-
ples each are created with the five hundred remaining cou-
ples. In the following sections, we define a trial as a throw
belonging to a learning set.

4 Experiment & Results

In a real environment, carrying out an experiment of this
sort and its re-initialisation can be tedious and complicated
(cf. Section 1). The virtual reality approach allows for a
quick performance process with a very large number of tri-
als/tests in total safety. In this way, the following experi-
ments are carried out automatically. The task coverage is
defined by the percentage of caught balls with the method
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Table 2
Results for the first experiment.
set of EQMT throw grasp coverage
learn. / 100 93 93 %
test1 0.050 100 97 97 %
test2 0.067 100 95 95 %
test3 0.066 100 96 96 %
test4 0.057 100 92 92 %
test5 0.069 100 95 95 %
- E=0.049
- NI = 86000
- EQMA=0.049

Table 3
Results for the second experiment.
throw grasp unreachable coverage
1000 838 82 91.3 %

described in Section 2.4. This percentage is calculated from
the number of reachable objects.

4.1 Experiment 1: Experiment with the Learning
Set & the Test Sets

Each throw belonging to the learning set and the test sets
is carried out. The neural network gives the position to reach
by the robot gripper. Each grasp is counted and presented
in Table 2 with their corresponding quadratic errors. The
coverage value is greater than 90 % in each case and the
results on the sets of test show that the virtual agent adapts
to new cases.

4.2 Experiment 2: Experiment on Efficiency

One thousand throws are performed with a random speed
vector. The number of grasped objects and the number of
unreachable objects are counted. Knowing that one thousand
velocity vectors are randomly generated, the fact that there
are not two identical vectors is checked. The results are
presented in Table 3. With a coverage higher than 90%, the
results are consistent with those of the first experiment. The
virtual agent has acquired an autonomous behaviour from
human demonstrations with an acceptable level of efficacy.

4.3 Results Analysis & the Variation of the Dimen-
sion Number of the Estimated Function

This Section shows the hypothesis and analysis that link
the number of trials and the number of dimensions of the
modeled function by the neural network. To illustrate the
subject, an example of dimension variation is given by an
approach for raising the constraint C1 and, consequently the
extension of the present study to the whole experimental
space. The presented approach does not offer an optimum

Table 4
Results for the first experiment with fifty trials.
set of EQMT throw grasp coverage
learn. / 100 93 93 %
test1 0.056 100 93 93 %
test2 0.076 100 95 95 %
test3 0.071 100 97 97 %
test4 0.061 100 94 94 %
test5 0.074 100 94 94 %
- E= 0.063
- NI= 137000
- EQMA=0.054

Table 5
Results for the second experiment with fifty trials.
throws grasp unreachable coverage
1000 810 114 91,4 %

result and is not the only way to raise C1. However, one of
the objectives of this Section is to show the consequences on
the number of trials if the number of dimensions needs to be
changed.

With the C1 constraint, one hundred trials are enough to
generalise the process and obtain adequate results. How-
ever, the previous work is in three dimensions (speed vec-
tor (Vbx, Vby, Vbz)). The following hypothesis is therefore
made: the estimated function for which the neural network
is built, globally maintains the same properties by modify-
ing the number of dimensions. It is necessary to have one
hundred velocity vectors to obtain a learning generalisation
in three dimensions. Thus, according to Shanon’s law, for
one dimension, 3√100 ≈ 4.64 trials are necessary to obtain
a learning generalisation. If the start position is no longer
fixed, six is the new number of dimensions (speed vector
(Vbx, Vby, Vbz), ball starting position (Pbx, Pby, Pbz)), thus
4.646 ≈ 10, 000 trials are necessary to extend the study to the
whole space. This number is too high, and consequently, it is
necessary to decrease the current number of demonstrations.
The following study with fifty throws of the previous learn-
ing set is made. The results are presented in Tables 4 and
5.

These results shows that fifty trials are enough to gen-
eralise the process. With this new value and according to
Shanon’s law, for one dimension 3√50 ≈ 3.68 trials are nec-
essary to obtain process generalisation and, consequently, if
the starting position is no longer fixed, 3.686 ≈ 2, 500 trials
are required to extend the study following a variable starting
position.

4.4 Discussion

With quite similar coverage results, fifty trials are ade-
quate to make the agent autonomous. While maintaining an
efficiency level of over 90%, the present study shows the in-
teractive method validity to make a virtual agent autonomous
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from few user demonstrations. Depending on the value of
effectiveness wanted, the number of trials can still be de-
creased. Consequently, a first extension of this work is to
find a minimum number of trials depending on a desired de-
gree of efficiency. However, that requires a more advanced
study, more tests, and it obviously depends of the chosen
constraints and the expected results.

The present method allows a simplification of defining the
meeting point and, a simplification of predicting and fol-
lowing the trajectory by using the user’s perception ability.
Moreover the short calculation time once the learning pro-
cess has finished, the intuitive aspect of the approach, and
the few necessary demonstrations are also advantageous. It
can be noted that VE offers the possibility of carrying out
tests with a very large number of trials in a short time. On
the other hand, the requirement of a human operator, and the
non follow-up of the trajectory if the ball is missed, should
also be considered. Another discussion point is the random
generation of trials that facilitates the generation process, but
which can be confronted with a more appropriate method of
generation with, for example, equally distributed vectors in
the 3D space. This last point can hypothetically improve the
results but depends on the simulation context.

5 Conclusion & Future Works

An intuitive and interactive method based on human
demonstrations to create human-like and autonomous be-
haviour for a virtual character or robot has been presented
in this study. By using human perception ability than can
simplify some complex dynamic and kinematic studies, and
a neural network that is used to generalise human demon-
strations, the method consists of firstly building a computer
simulation in which the virtual agent is controlled in real time
by the user in order to perform the tasks in a Cartesian space.
The acquired data during the demonstration process are then
used by a neural network that models a function representing
the task with a back-propagation algorithm.

The method was applied in a virtual simulation in which a
six-degree-of-freedom manipulator has to grasp a ball thrown
into its workspace. Defining the meeting point and, predict-
ing and following the trajectory were managed by the natu-
ral perception of the user. Our approach is concentrated of
searching for a minimum of trials while also maintaining an
adequate level of effectiveness, and with a task coverage of
over 90 %, the results demonstrate that only a few trials (50
trials) are required to obtain the adaptation of the robot to
unknown cases.

An interesting point of such a method is that the time re-
quired for a learning session and the learning performance
are linked to the degree of user performance during the
demonstration session. This last feature is obviously in re-
lation with the type of interface used and the correlation of
different workspaces (user, virtual agent, and interface). In
the present study, although the immersion enhancement with
advanced haptic features has been cited, the need to have an
interface adapted to such a engaging and dynamic task with a
large workspace, led to choosing a simple, magnetic tracking

system. This choice can be discussed and can possibly be the
cause of the user performance level during the demonstration
sessions with a ratio of 2/3.

In future research, the correlation of the different kinds
of workspace depending on the 3D interface chosen will be
investigated in more depth in order to increase user perfor-
mance during the learning session. A more realistic simula-
tion will be implemented with the complete physicalisation
of the virtual world. A more advanced study concerning the
minimum number of trials depending on a fixed efficiency
value will also be carried out. Finally, the present method
will be applied for other dynamic tasks in relation with var-
ious domains such as industry, interaction between human
and robot, and advanced human behaviour modelling.
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